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Abstract: Unsupervised contrastive learning for indoor-scene point clouds has
achieved great successes. However, unsupervised learning point clouds in out-
door scenes remains challenging because previous methods need to reconstruct
the whole scene and capture partial views for the contrastive objective. This is
infeasible in outdoor scenes with moving objects, obstacles, and sensors. In this
paper, we propose COˆ3, namely Cooperative Contrastive Learning and Contextual
Shape Prediction, to learn 3D representation for outdoor-scene point clouds in an
unsupervised manner. COˆ3 has several merits compared to existing methods. (1)
It utilizes LiDAR point clouds from vehicle-side and infrastructure-side to build
views that differ enough but meanwhile maintain common semantic information for
contrastive learning, which are more appropriate than views built by previous meth-
ods. (2) Alongside the contrastive objective, shape context prediction is proposed
as pre-training goal and brings more task-relevant information for unsupervised
3D point cloud representation learning, which are beneficial when transferring the
learned representation to downstream detection tasks. (3) As compared to previous
methods, representation learned by COˆ3 is able to be transferred to different
outdoor scene dataset collected by different type of LiDAR sensors. (4) COˆ3
improves current state-of-the-art methods on both Once and KITTI datasets by
up to 2.58 mAP. Codes and models will be released here. We believe COˆ3 will
facilitate understanding LiDAR point clouds in outdoor scene.

Keywords: 3D Representation Learning, Autonomous Driving, Contrastive Learn-
ing, Shape Context

1 Introduction

As the most reliable sensor in outdoor environments, LiDAR is able to precisely measure 3D location
of objects and the computer vision community has shown strong interest on perception tasks on
LiDAR point clouds, including 3D object detection, segmentation and tracking. Up to now, randomly
initializing and directly training from scratch on detailed annotated data still dominates this field.
Embraced by MOCO [1], recent research efforts [1, 2, 3, 4, 5] focus on unsupervised representation
learning with contrastive objective on different views built from images (the first column of Figure 1
shows example views built by [1, 2, 3, 4, 5]). They pre-train the 2D backbone in an unsupervised
manner and achieve significant performance improvement over training from scratch in various
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Figure 1: Example views built by different methods in contrastive learning. (a), (b) and (c) are sampled image
and views (different augmentations of the original image) used in [1, 2, 3, 4, 5]. (d), (e) and (f) show an example
of two views built in PointContrast [14], which are captured at different poses and differ much but meanwhile
still maintain enough common semantic information including the same sofa and table. (g) and (h) are views for
outdoor-scene point cloud from [17]. (g) is the original frame of point cloud and authors in [17] apply point
cloud augmentation to (g) for (h), which can be implemented with a simple linear transformation. [18] use
point cloud at different timestamps as views for contrastive learning, which is indicated in (g) and (i). During
the sampled period, the autonomous vehicle is waiting at the crossing and some other cars and pedestrians
are moving around. The autonomous vehicle has no access to how the environment changes and in different
timestamps, there are possibly different objects at the same position in its own coordinate, which makes it hard
to find accurate correspondence.

downstream tasks such as 2D object detection [6, 7, 8] and image segmentation [6, 9]. Inspired
by these successes together with the abundant unlabelled data available from self-driving vehicles,
we explore unsupervised representation learning for outdoor scene point clouds to improve the
performance on 3D object detection tasks.

In the past decade, learning 3D representation from unlabelled data has achieved great success
in single-object and indoor-scene point clouds. For point clouds of single objects such as CAD
models, previous works pre-train 3D encoders with various goals including reconstruction [10,
11], orientation estimation [12] and minimizing contrastive loss [13] and the 3D encoders extract
meaningful global representations of the point clouds for low-level downstream tasks like object
classification and registration. To extend this idea to high-level perception tasks for indoor-scene
point clouds, PointContrast [14] propose to reconstruct the point clouds of the whole indoor scenes,
collect partial point clouds from two different poses and utilize them as two views in contrastive
learning to learn dense (point-level or voxel-level) representation. More recent works such as [15]
and [16] also need to reconstruct the whole indoor scenes and this naturally brings the assumption
that the environment should be static. Figure 1 (d), (e) and (f) show an example of two views built in
PointContrast [14]. We can see that these two views differ a lot because they are captured in different
directions but meanwhile, they still contain enough common semantic information such as the same
sofa and table.

However, outdoor scenes are dynamic and large-scale, making it impossible to reconstruct the whole
scenes for building views. Thus, methods in [14, 15, 16] cannot be directly transferred but there
exists two possible alternatives to build views. The first idea, embraced by [17], is to apply data
augmentation to single frame of point cloud and treat the original and augmented versions as different
views, as indicated by Figure 1 (g) and (h). However, all the augmentation of point clouds, including
random drop, jittering, rotation and scaling, can be implemented in a linear transformation and views
constructed in this way do not differ enough. The second one is to consider point clouds at different
timestamps as different views, represented by [18]. Yet the moving objects and obstacles would
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make it hard to find correct correspondence for contrastive learning. See Figure 1 (g) and (f), while
the autonomous vehicle is waiting for the traffic light to turn green, other cars and pedestrians are
moving and the autonomous vehicle has no idea about how they move, making it impossible to
find correct correspondence. Due to these limitations, pre-trained 3D encoders in [17, 18] cannot
achieve noticeable improvement when transferring to datasets collected by different LiDAR sensors
or large-scale labelled datasets with the same kind of LiDAR sensors.

To overcome these limitations, we propose COoperative COntrastive Learning and COntextual Shape
Prediction, COˆ3, to learn representation for outdoor-scene point clouds in an unsupervised manner.
COˆ3 mainly contains two components, as described below.

Cooperative Views for Contrastive Learning. To build views of LiDAR point clouds that dif-
fer enough and share adequate semantic information, we propose to utilize a recently released
infrastructure-vehicle-cooperation dataset called DAIR-V2X [19] and build views for contrastive
representation learning using point clouds respectively from infrastructure LiDAR and vehicle Li-
DAR. As shown in (j), (k) and (l) in Figure 1, views built in this way differ a lot because they are
captured at different positions and they share enough information because they are captured at the
same timestamp. With the raw input point clouds from the vehicle and infrastructure, we further fuse
the point cloud from both sides at the same timestamp and use the fusion point cloud and point cloud
from vehicle-side as two views in contrastive representation learning.

Contextual Shape Prediction. As proposed in [20], representation learned from purely contrastive
learning is not able to capture task-relevant information and a reconstruction objective can be
implemented alongside to compensate this limitation. Detailed experiments on image represen-
tation learning have been conducted in [20] to demonstrate this statement and we want to bor-
row this idea to 3D point cloud. However, it can be extremely difficult to reconstruct the whole
scene with point-level or voxel-level representations. Instead, we propose a pre-training goal to
reconstruct local distribution of neighboring points using the dense representations. In practice,
we use shape context to describe the local distribution of each point’s neighborhood, which has
been demonstrated as a useful local distribution descriptor in previous works [15, 21, 22, 23].

Figure 2: Two examples of shape context.

Figure 2 shows two examples of shape
context with 8 bins. The neighborhood of
the query point (marked as a larger black
point) is first divided into 8 bins and we
compute an 8-dimensional distribution
with the numbers of points in these bins.
The pre-training task is to predict local
distributions of each point or voxel with
the extracted point-level or voxel-level representation. Note that the number of bins can be changed
as needed. This refined reconstruction pre-training task introduces more task-relevant information
and helps learn much better representations.

The contributions of this work can be summarized as follows. (1) COˆ3 is proposed to utilize the
recently proposed vehicle-infrastructure cooperative dataset to build adequate views for unsupervised
contrastive learning and learn good 3D representations for outdoor-scene point clouds. (2) A shape-
context prediction task is proposed alongside the contrastive objective and inject more task-relevant
information in the learned representation, which is beneficial for downstream tasks. (3) The learned
3D representations can be well transferred to datasets collected by different LiDAR sensors on
3D object detection tasks. (4) Extensive experiments demonstrate the effectiveness of COˆ3. For
example, COˆ3 improves Second, PV-RCNN, CenterPoints on Once [19] by 1.07, 0.62 and 2.58
respectively.

2 Related Works

3D Object Detection. Figure 3 summarizes current 3D object detection methods in autonomous
driving scenes. The raw LiDAR point clouds is first passed through a 3D encoder and transferred

3



Figure 3: Summary of current 3D object detectors. The raw input LiDAR point cloud is first processed by the 3D
encoder and per-point or per-voxel representation is generated. After that, these dense representation is mapped
onto the ground plane and transformed into the Bird-Eye-View (BEV) map. Finally, a 2D backbone is used to
encode the BEV map and afterwards a detection head is stacked to generate the final detection results.

into per-point or per-voxel representation. Then these dense representation is projected onto the
ground plane and we get Bird-Eye-View (BEV) map. After that, the BEV map is encoded by
a 2D backbone followed with a detection head and the final detection results are generated. Up
to now, 3D object detectors can be divided into three main streams due to different 3D encoders
they used: (1) point-based methods [24, 25, 26] produce per-point representation. (2) voxel-based
methods [27, 28, 29, 30, 31, 32] generally transform point cloud into voxel grids and process them
using 3D volumetric convolutions. (3) point-voxel-combined methods [33, 34, 35] utilize features
from both (1) and (2). Among all these methods, [27, 31, 34] are the most widely used detectors and
achieve state-of-the-art performance, all of which have a 3D voxel encoder. Also, all these methods
rely on sufficient training labels and precise 3D annotations. Thus in this paper, we propose COˆ3 to
pre-train voxel encoders without labels for outdoor-scene LiDAR point clouds and the representation
learned in this unsupervised manner can be transferred to different downstream datasets collected by
different LiDAR sensors.

3D Unsupervised Representation Learning for LiDAR Point Clouds. On the contrary to 2D
unsupervised pre-training and 3D unsupervised representation learning for object-based or indoor-
scene point clouds, which have demonstrated promising performance on downstream tasks [1, 2, 3, 4,
5, 14, 15, 16, 12, 10, 11, 13], training from scratch still dominates 3D vision field on outdoor scene
point clouds. PointContrast [14] is the pioneering work for unsupervised contrastive learning on
indoor-scene point clouds and shows performance gain on diverse indoor scene understanding tasks.
Together with the following works including [15, 16], they rely on the assumption of static scenes that
have been registered for constructing adequate views. To extend their ideas to outdoor-scene LiDAR
point clouds, [17] proposes to augment single frame of point cloud for building views in contrastive
learning and [18] utilizes point clouds at different timestamps as different views for unsupervised
representation learning. However, all the augmentation of point cloud can be implemented in a single
linear transformation and views built in this manner do not differ enough. Meanwhile, [17] needs
to pre-train both the 3D backbone and 2D backbone of the detectors but there exists different 2D
backbones in current 3D object detection methods, making this methods less scalable across different
detectors. For the views built in [18], it is very difficult to find correct correspondence because
the outdoor scene is dynamic. These limitations make representations learned in [17, 18] unable to
transfer to large-scale datasets or different datasets collected by various LiDAR sensors. In this work,
we propose to use vehicle-side and fusion (vehicle and infrastructure) point clouds as two views in
contrastive learning. Besides the contrastive objective, a shape-context prediction pre-training goal is
proposed to learn better 3D representation.

3 Methods

In this section, we introduce the proposed COˆ3 for unsupervised representation learning on LiDAR
point clouds in outdoor scenes. As detailed in Figure 4, COˆ3has two pre-training objectives: (a) a
cooperative contrastive learning goal on dense (point-level or voxel-level) representations between
vehicle-side and fusion point clouds, which provides adequate views for contrastive learning. (b) a
contextual shape prediction loss to bring in more task-relevant information. To start with, we discuss
the problem formulation and overall pipeline of COˆ3 in Section 3.1. Then we respectively introduce
the cooperative contrastive objective and contextual shape prediction goal in Section 3.2 and Section
3.3. Finally in Section 3.4, we provide detailed implementation of COˆ3.
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Figure 4: The pipeline of COˆ3. With vehicle-side and infrastructure-side LiDAR point clouds as inputs, we
first transform the infrastructure-side LiDAR point cloud into vehicle-side coordinate and fuse them to form the
fusion point cloud. Then vehicle-side and fusion point clouds are processed by the 3D backbone to generate
point/voxel-level representations. With these dense representations, we propose two pre-training objectives:
(a) Cooperative Contrastive Loss, which introduces adequate views of outdoor scene LiDAR point clouds for
contrastive learning. (b) Contextual Shape Prediction Loss, which brings in task-relevant information and makes
the learned representation better for downstream tasks.

3.1 Problem Formulation and Pipeline

To begin with, we define the raw LiDAR point clouds from vehicle-side and infrastructure-side
respectively as Pveh = [Pxyz

veh,P
feat
veh ] and Pinf = [Pxyz

inf ,P
feat
inf ], where Pxyz

v/i ∈ RN p
v/i×3 and Pfeat

v/i ∈
RN p

v/i×d. Here N p
v/i denotes the number of points (or voxels) in vehicle-side and infrastructure-side

respectively and d = 1 is always the case to represent the intensity of each point (or voxel). Note here
that as vehicle/infrastructure/fusion point clouds may sometimes go through the same process, we will
change the notation to v/i/f to indicate the same processing on respective point cloud for convenience.
When collecting the cooperative dataset, each pair of vehicle-side and infrastructure-side point clouds
is associated with a transformation T veh

inf indicating the relationship between vehicle-side coordinate
and infrastructure-side coordinate.

With Pveh, Pinf and T veh
inf as inputs, COˆ3 first transforms the infrastructure point cloud into vehicle-

side coordinate, that is P′
inf = [T veh

inf (P
xyz
inf ),P

feat
inf ], and concatenates the transformed infrastructure

point cloud and the vehicle point cloud into fusion point cloud Pfusion = [Pveh,P
′
inf], where Pfusion ∈

R(N p
veh+N p

inf)×(3+d). Then Pveh and Pfusion are embedded by the 3D encoder f enc

Penc
v/f = f enc(Pv/f) (1)

where Penc
v/f = [Pxyzenc

v/f ,Pfeatenc

v/f ] and Pxyzenc

v/f ∈ RN penc

v/f ×3, Pfeatenc

v/f ∈ RN penc

v/f ×denc
. N penc

v/f is the number of
points (or voxels) after encoding. As there exists pooling operations in 3D encoders, the number of
points (or voxels) may change when processed by the 3D encoders. denc is the number of feature
channels after encoding. To guide the 3D encoder to learn good representations in an unsupervised
manner, we propose a cooperative contrastive loss LCO2

and a contextual shape prediction loss LCSP
for optimization. The overall loss function can be written as:

L =
∑

Pv/f∈{Pv/f}

LCO2
{f enc(Pv/f)}+ wCSP × LCSP{f enc(Pv/f),P

xyz
veh,P

xyz
fusion} (2)

where Pv/f denote a batch of vehicle and fusion point clouds. As described in this equation, LCO2

takes as inputs the encoded vehicle and fusion point clouds and applies contrastive learning on the
features of these two views. Meanwhile, LCSP introduces more task-relevant information into f enc by
using the encoded features to predict contextual shape whose ground truth is obtained by Pxyz

veh and
Pxyz

fusion. wCSP is a weighting constant that makes the magnitudes of the two loss similar. Details about
LCO2

and LCSP will be discussed respectively in Section 3.2 and Section 3.3.

3.2 Cooperative Contrastive Objective

Unsupervised contrastive learning has been demonstrated successful in image domain [1, 2, 3, 4, 5]
and indoor-scene point clouds [14, 15, 16]. However, when it turns to outdoor-scene LiDAR
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point clouds, building adequate views, which share common semantics while differing enough,
for contrastive learning. To tackle this issue, we utilize a recently released vehicle-infrastructure-
cooperation dataset called DAIR-V2X [19] and use vehicle-side point clouds and fusion point clouds
as views for contrastive representation learning. The loss is defined as follows:

LCO2 =
1

N1

N1∑
n=1

− log(
exp(znveh · zninf/τ)∑N1

i=1 exp(z
i
veh · ziinf/τ)

) with

{znv/f}
N1
n=1

sample∼ Zv/f ; Zv/f = normalize(MLP1(P
featenc

v/f ))

(3)

where the embedded features of vehicle and infrastructure point clouds, Pfeatenc

veh and Pfeatenc

inf , are first
projected into a common feature space by a Multi-Layer-Perceptron MLP1 and then normalized.
Zv/f ∈ RN penc

v/f ×d1 is the projected features of vehicle point cloud and infrastructure point cloud, where
d1 indicates the dimension of the common feature space and N penc

v/f are the point/voxel numbers of
encoded vehicle and infrastructure point clouds respectively. We then sample N1 pairs of features
from Zv/f for contrastive learning. According to our empirical observation, ground points have a
great negative effect on contrastive learning. Thus we mark those points with z value lower than
a threshold zthd as ground points and filter them out when sampling. After filtering, we randomly
sample N1 points from the vehicle point cloud and find their corresponding points (or voxels) in the
fusion point cloud to form N1 pairs of points (or voxels). We treat corresponding points (or voxels)
as positive pairs and otherwise negative pairs for contrastive learning and the final loss function is
shown in the first line of Equation (3), where τ is the temperature parameter.

3.3 Contextual Shape Prediction

COˆ3 aims to learn representations applicable to various downstream tasks. But it cannot be
guaranteed that task-relevant information is extracted by contrastive loss in Eqn.(3) [20]. Instead,
[20] shows that an additional reconstruction objective alongside contrastive loss can bring more
task-relevant information. However, it is extremely difficult to reconstruct the whole scene with
point/voxel-level representations on outdoor-scene LiDAR point clouds. To mitigate this issue, we
propose to reconstruct the neighborhood of each point/voxel with its representation. To this end, a
contextual shape prediction loss is designed as written by

LCSP =
1

N2

N2∑
n=1

Nbin∑
m=1

pn,m log
pn,m
qn,m

with

{pn,∗}N2
n=1

sample∼ P ; {qn,∗}N2
n=1

sample∼ Q ; P = softmax(MLP2(P
featenc

veh ))

(4)

where the encoded features of vehicle point clouds, Pfeatenc

veh , are first passed through another Multi-
Layer-Perceptron MLP2 and softmax operation is applied on the projected features to get a predicted
local distribution of each point/voxel, that is P ∈ RN penc

veh ×Nbin . N penc

veh is the number of vehicle-side
points/voxels after embedded by the 3D encoder and Nbin is the number of bin we divide the local
neighborhood of each point/voxel. We use Nbin = 32 in this paper and compute the ’ground
truth’ local shape context Q ∈ RN p

veh×Nbin (N p
veh is the number of raw input vehicle points/voxels)

beforehand, which will be discussed later. With P and Q, N2 sampled points/voxels are drawn from
P and Q. We have pn,∗ ∈ RNbin and qn,∗ ∈ RNbin . Note that these sampled predicted contextual
shape distributions are in pairs. Finally, as shown in the first line in Equation (4), LCSP is a KL-
divergence loss applied on pn,∗ and qn,∗, where the KL-divergence describes the distance between
two probability distribution (pn,∗ and qn,∗).

To compute the “ground truth” local shape context Q for the ith point/voxel, we first divide the
neighborhood of the point/voxel into Nbin = 32 bins along x-y plane with R1 = 0.5m and R2 = 4m.
Then we compute the number of points/voxels in each bin and this results in Nbin = 32 numbers
Qraw

i,∗ ∈ RNbin . After that Qi,∗ is finalized as below:

Qi,∗ = softmax(normalize(Qraw
i,∗ )× SFCSP) (5)

where SFCSP is a scaling factor to make the final distribution more sensible.
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3.4 Detailed Implementation of COˆ3

3D Encoder. We use Sparse-Convolution as the 3D encoder which is a 3D convolutional network
because it is widely used as 3D encoders in current state-of-the-art methods [27, 31, 33]. Thus it can
be used to evaluate COˆ3 in as many 3D detectors as possible.

4 Experiments

4.1 Experiment Setup

Datasets. We utilize the recently released vehicle-infrastructure-cooperation dataset called DAIR-
V2X [19] to pre-train 3D sparse encoder with COˆ3 and fine-tune the pre-trained encoder on two
downstream datasets: Once [36] and KITTI [37]. DAIR-V2X [19] contains 38845 LiDAR frames
(10084 in vehicle-side and 22325 in infrastructure-side) for cooperative-detection task and we utilize
their dataset for pre-training 3D encoder in an unsupervised manner via the proposed COˆ3. The total
number of provided frames in cooperative dataset is around 6670 and they are collected by 120-beam
LiDAR. Once [36] is a large-scale autonomous dataset for evaluating self-supervised methods with
1 Million LiDAR frames and only 15k fully annotated scenes with 3 classes (Vehicle, Pedestrian,
Cyclist). A 40-beam LiDAR is used in [36] to collect the point cloud data. We adopt common
practice, including point cloud range and voxel size, in their public code repository1 to evaluate
the proposed COˆ3. KITTI [37] is another widely used self-driving dataset, where point clouds are
collected by LiDAR with 64 beams. It contains around 15k samples for training and evaluation.
For point cloud range and voxel size, we adopt common practice in current popular codebase like
MMDet3D2 and OpenPCDet3. Note that LiDAR sensors used in Once and KITTI are different than
that used in DAIR-V2X [19].

Detectors. We select several current state-of-the-art methods implemented in the public repository
of Once dataset [36] and OpenPCDet to evaluate the quality of representations learned by COˆ3,
including Second [27], CenterPoint [31] and PV-RCNN [34]. Note that only CenterPoint in Once [36]
has a slightly different 3D backbone and we make it the same as those of other methods. As the
GPUs and PyTorch [38] versions used in the public code repositories are different from those in
our experiments, we further tune the configurations in the repositories and make the performance of
training from scratch match or even surpass their released results for fair comparisons.

Baselines. As introduced in Section 1, there exists two ways to directly transfer the idea in Point-
Contrast [14] to outdoor-scene LiDAR point clouds, embraced respectively by GCC-3D [17] and
STRL [18]. Thus we conduct experiments on these two methods. Also, [36] proposes several
self-supervised learning methods following hints from previous works in image domain and indoor-
scene point clouds, including Swav [3], Deep Cluster (short as D. Cl.) [39], BYOL [4] and Point
Contrast (short as P.C.) [14]. As the same to COˆ3, we pre-train all these baseline unsupervised
3D representation learning methods on DAIR-V2X [19] and fine-tune the pre-trained encoders on
Once [36] and KITTI [37] for comparisons. For STRL, we follow their public code repository for
indoor scene point cloud and reproduce for outdoor scene point cloud, which is not published yet4.
As for GCC-3D, the authors do not public their code due to privacy restriction so we write emails to
them and they kindly pre-train the 3D encoders on DAIR-V2X dataset and give us the pre-trained
models. Note that all methods compared in this section are pre-trained only once on DAIR-V2X [19]
and then fine-tuned on different downstream detectors and datasets.

Evaluation Metrics. We use common evaluation metrics for both the two downstream datasets. For
Once dataset, IoU thresholds 0.7, 0.3, 0.5 are respectively adopted for vehicle, pedestrian, cyclist.
Then 50 score thresholds with the recall rates ranging from 0.02 to 1.00 (step size if 0.02) are
computed and the 50 corresponding values are used to draw a PR curve, resulting in the final mAPs

1https://github.com/PointsCoder/Once_Benchmark
2https://github.com/open-mmlab/mmdetection3d
3https://github.com/open-mmlab/OpenPCDet
4https://github.com/yichen928/STRL
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Init. Det. Vehicle Pedestrian Cyclist mAP0-30m 30-50m 50m- 0-30m 30-50m 50m- 0-30m 30-50m 50m-
Rand

Sec.

84.35 66.41 49.49 27.87 23.24 16.36 69.92 52.27 35.25 52.21
Swav 83.21 65.25 50.32 31.55 26.18 17.45 69.40 53.60 35.91 53.03+0.82

D. Cl. 84.02 67.51 50.26 29.21 21.55 17.39 69.86 51.95 34.69 52.30+0.09

BYOL 81.60 60.93 46.97 18.71 16.59 12.95 61.20 43.15 27.30 45.24
P.C. 84.19 62.66 46.32 21.55 17.70 14.05 64.98 47.25 28.81 47.64

GCC-3D 85.43 67.88 51.64 27.18 21.55 16.86 72.15 52.28 35.27 52.28
STRL 83.71 65.59 50.39 27.41 22.23 17.17 68.28 51.96 34.17 51.57
Ours 84.62 67.11 49.42 33.64 28.00 17.61 68.22 52.89 32.92 53.28+1.07

Rand

PV

88.01 72.15 58.93 29.67 23.24 16.47 71.46 54.61 36.60 54.55
Swav 87.80 71.81 57.42 29.86 24.88 17.15 72.56 54.25 36.44 54.89+0.34

D. Cl. 87.68 71.77 57.11 32.20 26.00 18.28 71.64 53.09 34.80 54.91+0.36

BYOL 87.37 69.63 55.55 19.74 18.82 14.64 67.01 47.11 31.11 49.41
P.C. 87.72 70.42 55.43 20.52 18.93 16.76 68.58 49.55 33.59 50.49

GCC-3D 87.71 72.20 59.42 27.91 25.96 16.40 72.59 53.88 37.58 54.55
STRL 89.39 70.32 57.40 27.67 23.41 17.55 72.05 54.21 36.85 54.25
Ours 87.85 71.79 57.46 32.75 26.57 17.29 71.22 52.50 36.20 55.17+0.62

Rand

Cen.

77.42 54.68 38.21 51.08 41.13 25.79 70.67 54.68 35.14 55.92
Swav 77.58 54.28 38.51 53.95 42.52 28.04 71.10 54.99 37.93 57.00
D. Cl. 77.35 55.12 38.91 54.99 42.26 29.31 71.80 56.60 37.05 57.65+1.08

BYOL 76.56 53.61 37.79 46.48 31.73 18.72 67.55 49.65 27.67 52.17
P.C. 77.64 53.38 39.15 49.69 35.57 23.29 69.37 50.65 30.03 54.17

GCC-3D 77.80 56.75 39.16 54.46 40.11 25.61 74.43 57.04 39.51 58.32+2.40

STRL 78.01 54.10 39.32 54.09 40.77 25.90 71.60 56.56 36.57 57.44
Ours 78.02 56.13 39.94 55.09 42.34 27.44 74.17 56.05 38.16 58.50+2.58

Table 1: Results of 3D object detection on Once dataset [36]. We conduct experiments on 3 different detectors:
Second [27] (short as Sec.), PV-RCNN [34] (short as PV) and CenterPoint [31] (short as Cen.) and 8 different
initialization methods including random (short as Rand, i.e. training from scratch), Swav [3], Deep Cluster
(short as D. Cl.) [39], BYOL [4], Point Contrast (short as P.C.) [14], GCC-3D [17] and STRL [18]. Results are
mAPs in %. “0-30m”, “30-50m” and “50m-” respectively indicate results for objects in 0 to 30 meters, 30 to 50
meters and 50 meters to infinity. The “mAP” in the final column is the overall evaluation and major metric for
comparisons. We use bold font for top 3 mAP in each category in each range for better understanding.

(mean accurate precisions) for each category. We also further overage over the three categories and
compute an ’Overall’ mAP for evaluations. For KITTI dataset, all the results are evaluated by mAPs
with three difficulty levels: Easy, Moderate and Hard. These three results are further average and an
’Overall’ mAP is generated for comparisons.

4.2 Main Results

Once Detection. As shown in Table 1, when initialized by COˆ3 , all the three detectors achieve the
best performance on the overall mAPs, which we value the most. When CenterPoint [31] is used as
backbone, COˆ3 achieves the best performance among all detectors and all initialization methods
with 2.58 improvement on mAPs. Meanwhile, the improvement on PV-RCNN [34] is only 0.62 in
mAP. This is because PV-RCNN [34] has two 3D backbones, the point-based branch and voxel-based
branch, and COˆ3 only pre-trains the voxel-based branch. Thus same phenomenon can be observed
in other pre-training methods. When we look into detailed categories, it can be found that COˆ3
achieve consistent improvement on Pedestrian class and the highest mAP when CenterPoint [31] is
used as the detector, which is important for the deployment of autonomous driving system in real
world. For Cyclist class, CenterPoint [31] initialized by COˆ3 achieves the best performance among
all the detectors and all the initialization methods. However, as we can see in the Vehicle class, the
improvement achieved by COˆ3 is not that significant (same phenomenons in other initialization
methods) and the reason might be that the performances of all the detectors on Vehicle class are
already very high and there is little room for improvement.

KITTI Detection. As shown in Table 2, when initialized by COˆ3 , PV-RCNN [34] achieves the
best performance on Easy and Hard (+1.19) level and third place on Moderate level among all the
initialization schemes. Meanwhile Second [27] equipped with COˆ3 achieves the highest mAP on
Easy (+1.11) and Moderate level (+1.22) and third place on Hard level among all the initialization
schemes. The relatively lower improvements on KITTI dataset [37] stem from the smaller number of
training samples (nearly half of that in Once dataset [36]) and this makes the detectors easily reach
their capacity, where improvement is hard to achieve. This is also demonstrated by the consistent
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Init. Det. Vehicle Pedestrian Cyclist Overall
Easy Moderate Hard

Random

Sec.

77.45 48.71 63.32 73.29 63.16 60.34
Swav 77.64 49.48 64.95 73.23 64.02+0.86 60.93+0.59

D. Cl. 77.47 49.46 63.19 73.19 63.37 60.08
BYOL 76.89 43.29 60.99 71.05 60.39 56.98

P.C. 77.45 45.32 65.44 72.67 62.74 59.21
GCC-3D 77.99 47.92 64.45 73.86+0.57 63.45 59.80

STRL 77.63 48.46 65.52 73.95+0.66 63.87+0.71 60.93+0.59

Ours 77.95 49.59 65.60 74.40+1.11 64.38+1.22 60.88+0.54

Random

PV

79.13 53.43 69.12 78.54 67.23 63.68
Swav 79.35 52.92 71.45 78.43−0.11 67.91+0.68 64.60+0.92

D. Cl. 79.22 50.75 71.21 77.05 67.06 64.50+0.82

BYOL 79.02 51.40 72.07 77.96 67.50 64.42
P.C. 79.31 51.66 72.40 77.62 67.79+0.56 63.31

GCC-3D 79.16 50.66 69.95 77.07 66.59 63.67
STRL 79.15 51.71 67.78 77.10 66.21 62.90
Ours 79.05 52.47 71.73 78.81+0.27 67.75+0.52 64.87+1.19

Table 2: Results of 3D object detection on KITTI dataset [37]. We conduct experiments on 3 different detectors:
Second [27] (short as Sec.), PV-RCNN [34] (short as PV) and CenterPoint [31] (short as Cen.) and 8 different
initialization methods including random (short as Rand, i.e. training from scratch), Swav [3], Deep Cluster (short
as D. Cl.) [39], BYOL [4], Point Contrast (short as P.C.) [14], GCC-3D [17] and STRL [18]. Results are mAPs in
%. “Easy”, “Moderate” and “Hard” respectively indicate difficulty levels defined in KITTI dataset [37]. Results
in each category are from moderate level. The “Overall” results in the final column is the major metric for
comparisons. We use bold font for top 3 mAP in each category in each difficulty level for better understanding.

Init. Once (CenterPoint) KITTI (Second)
Vehicle Pedestrian Cyclist Overall Vehicle Pedestrian Cyclist Overall

Random 62.85 45.52 59.39 55.92 77.45 48.71 63.32 63.16
Contextual Shape Prediction Only 62.86 49.17 59.86 57.30 77.75 49.16 63.18 63.36

Cooperative Contrastive Only 63.39 48.14 61.05 57.53 77.40 47.78 65.06 63.41
Ours 64.50 48.83 62.17 58.50 77.95 49.59 65.60 64.38

Table 3: Results of ablation study on Once [36] and KITTI [37]. We use CenterPoint [31] on Once and
Second [27] on KITTI. Results are mAPs in %. For Once, results are average across different ranges. For KITTI,
results are all in moderate level. We highlight the best performance in each category for better understanding.

results across different initialization schemes (relatively small improvements as compared to those in
Once dataset [36]). When we look into detailed categories, COˆ3 achieve consistent improvement on
Pedestrian and Cyclist, which is essential for autonomous driving system.

Overall. COˆ3 achieve consistent performance improvement on different detectors on different
datasets while other initialization methods only occasionally make improvements but sometimes even
make the performance worse. These demonstrate that the representation learned by COˆ3, which
provides adequate views for contrastive learning and injects task-relevant information via contextual
shape prediction, is able to be transferred to different datasets collected by different LiDAR sensors.

4.3 Ablation Study

We conduct ablation experiments to analyze the effectiveness of different components in COˆ3. We
respectively pre-train the 3D encoder with cooperative contrastive objective and contextual shape
prediction objective. Then we compare their performance in downstream tasks with those of training
from scratch and pre-trained by COˆ3. As shown in Table 3, it can be found that each of the
objective alone can achieve slight improvement, which demonstrates the effectiveness of each part of
pre-training goal. Besides, once pre-trained by COˆ3, we achieve the best performance.

5 Conclusion

In this paper, we propose COˆ3, namely Cooperative Contrastive Learning and Contextual Shape
Prediction, for unsupervised 3D representation learning in outdoor scenes. The cooperative contrastive
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loss utilize the recently released vehicle-infrastructure-cooperation dataset DAIR-V2X [19] to build
views for contrastive learning, which differ enough while sharing common semantics. The contextual
shape prediction objective guides the 3D encoders to learn representations that are able to predict
the neighborhood distribution of each point/voxel and provides task-relevant information for the
3D encoders. According to our experiments, COˆ3 is able to learn good representations and these
representations can be transferred to downstream datasets collected by different LiDAR sensors to
improve performance of different detectors. The performance gain surpasses previous unsupervised
3D representation learning methods for outdoor scene LiDAR point clouds, including GCC-3D [17]
and STRL [18].
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