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Deep Samplable Observation Model for Global
Localization and Kidnapping

Runjian Chen , Huan Yin , Yanmei Jiao , Gamini Dissanayake , Yue Wang , and Rong Xiong

Abstract—Global localization and kidnapping are two challeng-
ing problems in robot localization. The popular method, Monte
Carlo Localization (MCL) addresses the problem by iteratively
updating a set of particles with a “sampling-weighting” loop.
Sampling is decisive to the performance of MCL [1]. However,
traditional MCL can only sample from a uniform distribution
over the state space. Although variants of MCL propose different
sampling models, they fail to provide an accurate distribution
or generalize across scenes. To better deal with these problems,
we present a distribution proposal model named Deep Samplable
Observation Model (DSOM). DSOM takes a map and a 2D laser
scan as inputs and outputs a conditional multimodal probability
distribution of the pose, making the samples more focusing on
the regions with higher likelihood. With such samples, the con-
vergence is expected to be more effective and efficient. Considering
that the learning-based sampling model may fail to capture the
accurate pose sometimes, we furthermore propose the Adaptive
Mixture MCL (AdaM MCL), which deploys a trusty mechanism
to adaptively select updating mode for each particle to tolerate this
situation. Equipped with DSOM, AdaM MCL can achieve more
accurate estimation, faster convergence and better scalability than
previous methods in both synthetic and real scenes. Even in real
environments with long-term changes, AdaM MCL is able to local-
ize the robot using DSOM trained only by simulation observations
from a SLAM map or a blueprint map. Source code for this paper
is available here: https://github.com/Runjian-Chen/AdaM_MCL.

Index Terms—Global localization, multimodal, samplable
observation model.

I. INTRODUCTION

THE ability to accurately localize a robot is the fundamental
requirement for many autonomous tasks, including motion

planning, decision making and control [2]–[5]. In this paper, we
focus on the global localization and kidnapping problem on 2D
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scenes with 2D laser observation. Given real-time motion infor-
mation and 2D laser observation, global localization algorithms
aim to estimate the pose of the robot in a map of the environment
without any prior about the robot pose. For kidnapping, a more
complicated problem where the robot is suddenly taken to some
other place without being told, the algorithm should be able to
detect this situation and recover from it.

Monte Carlo Localization (MCL) [1] is arguably the most
popular and efficient algorithm [6] for these two problems. MCL
uses a set of particles with weights to represent the estimated
probability distribution of the robot pose and iteratively deploys
a “sampling-weighting” routine to update this set. The essential
component of MCL is sampling particles from a proposal
distribution [1].

In global localization and kidnapping problems, traditional
MCL can only sample from a uniform distribution over the
entire state space. On the one hand, if the particle number is
small, there might not be any particle around the accurate pose,
resulting in an inaccurate estimation of the robot pose. On the
other hand, if the particle number is large enough to cover
the whole state space, the computational cost is too high and
makes it impossible to finish the update in real-time. To make
sampling more effective and efficient, Dual MCL in [1] proposes
to sample from observation with three handcrafted features, as
shown in Fig 1. Mixture MCL in [1], which combines traditional
MCL and Dual MCL by executing the former with probability
p or the latter with probability 1− p in an updating iteration,
achieves the best performance among variants of MCL [1], [7],
[8]. However, these handcrafted features are far from enough to
extract meaningful information from observation and it relies on
data collection in the same environment where it is deployed,
making it unrobust and unable to generalize across scenes.

Recently, many researchers focus on deep learning techniques
for providing a proposal distribution [9]–[13]. However, the
proposal distribution generation in [12] only takes the ob-
servation as input and it requires training data collection in
the testing environment, which makes it unable to generalize
across scenes. [9]–[11], [13] are only able to provide a proposal
distribution with a fixed number of probability peaks, which
limits their performance because one observation can usually
correspond to various numbers of poses where the robot can get
similar observations.

To address the problems mentioned above, we propose the
Deep Samplable Observation Model (DSOM), which utilizes the
feature extraction and generalization ability of the convolutional
neural network to efficiently generate a probability map over
the entire state space with an adaptive number of probability
peaks. Fig. 1 describes the difference between sampling models
in MCL, Mixture MCL and DSOM. Although the output pro-
posal distribution from DSOM can easily be incorporated in the
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Fig. 1. Sampling models in MCL, Dual MCL and AdaM MCL. (a) Traditional
MCL: only uniform distribution. (b) Dual MCL: sample from limited poses with
handcrafted features. (c) DSOM: distribution over the entire space.

Mixture MCL framework, the performance is unstable due to the
combining mechanism in the original Mixture MCL framework.
Thus we further propose Adaptive Mixture MCL (AdaM MCL),
which introduces a trusty mechanism to divide the particle set
into two parts: highly trusted one and untrusted one, and deploy
traditional MCL and dual MCL respectively for these two parts.
AdaM MCL is able to generalize across scenes and localize the
robot with high accuracy in global localization and kidnapping
problems.

II. RELATED WORK

Global localization and kidnapping have long been traditional
topics in robotics. From traditional methods built upon proba-
bilistic framework to recent deep learning techniques, we divide
algorithms on this topic into the following three categories: (1)
traditional techniques (2) deep-sampling-model-aided particle
filter (3) differentiable particle filter.

Traditional Techniques. Based on the traditional probabilis-
tic framework, this category is embraced by extended Kalman
Filter (EKF) [14], [15] and Monte Carlo Localization (MCL) [1],
[16]. EKF depends on a unimodal assumption and is restricted
to a specific distribution, i.e. the Gaussian distribution. Thus
it is only able to handle the pose tracking problem where the
prior about the robot pose (eg. mean and variance) is required.
Meanwhile, MCL, also called the particle filter, utilizes a set of
particles to represent the multimodal distribution and eliminate
the constraint brought by a specific distribution, achieving rel-
atively satisfying results on global localization and kidnapping
problems. Among variants of MCL, Mixture MCL [1] is the
most successful one. It introduces Dual MCL, which utilizes
three handcrafted features (the location of a sensor scan’s center
of gravity and the average distance measurement) for better

sampling particles from observation, as shown in Fig. 1. Mixture
MCL combines traditional MCL and Dual MCL for better per-
formance. However, the handcrafted features are not informative
and data collection in the same scene is required, which is always
inapplicable in the real world. Thus Mixture MCL suffers from
the lack of generalization ability and unrobustness, especially in
highly symmetrical environments.

Deep Sampling Model for Aiding MCL. Works includ-
ing [9]–[11], [17], [18] deploy the deep neural network to
provide a proposal distribution, which boosts the performance
of MCL. They can be classified into two categories by how
many probability peaks they provide. The first one is unimodal.
Represented by [9], [17], a classifier or a regression network
is trained to find the pose with the largest possibility to obtain
the observation in a given map, which provides only a unimodal
distribution. However, as the environment can be very symmet-
rical and dynamic, observations at different poses can be very
similar and one observation usually corresponds to several poses,
for which the unimodal distribution might quickly lose track of
the robot pose. The second category is Top N. Embraced by
[10], [11], [13], [18], this kind of methods train deep models
to extract features of the observation and features of templates
in the database, with which they are able to propose top N
possible regions. This category has two limitations. First, it can
only choose the top N regions, where N is a fixed handcrafted
parameter. However, in real scenes, one observation might cor-
respond to different numbers of poses and N limits this model’s
flexibility to approximate the accurate multimodal distribution.
Secondly, the output of this kind of model is simply N regions
and additional effort should be taken to construct a probability
distribution over the state space.

Differentiable Particle Filter. [12], [19], [20] try to make the
whole updating process of particle filter differentiable. However,
the generation process of proposal distribution in [12] does not
take the map as inputs and it is trained on the exact map where
they collect testing sequences, making it unable to generalize
across different scenes. Also, in [19], [20], the methods do not
consider sampling from a deep proposal and are still only able
to sample from a uniform distribution at the very beginning.
Thus it is doubtful whether these methods are able to cope with
kidnapping and there are no experiments on kidnapping in these
works.

To briefly summarize, a good sampling model should provide
an accurate multimodal probability distribution with an adap-
tive number of probability peaks. Additionally, generalization
ability, low time consumption and scalability over scene sizes
are also important requirements. Moreover, as training samples
for the sampling model may not cover every possible situation,
the predicted probability distribution will occasionally fail to
capture the correct pose. The simple combination of traditional
MCL and Dual MCL in Mixture MCL may result in losing track
of the correct pose if Mixture MCL barely uses the Dual MCL
branch when its sampling model fails to capture the correct pose.
In this paper, we focus on these two challenges and propose
the Deep Sample Observation Model (DSOM) and Adaptive
Mixture MCL (AdaM MCL) to address them.

III. DEEP SAMPLABLE OBERVATION MODEL

In this section, we propose our Deep Samplable Observation
Model (DSOM). As shown in Fig. 2, the inputs of DSOM
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Fig. 2. The architecture of Deep Samplable Observation Model.

are two images, one for the environment and one for the ob-
servation information (here we plot the 2D laser ranges on
an image), represented by two matrices Menv ∈ RHenv×Wenv

and Mscan ∈ RHscan×Wscan . PM, the output of DSOM, is
the grid approximation of the probability distribution of the
pose. We discretize the state space (x, y, θ) by [Henv,Wenv,K].
Assuming the environment is x meters in length and y meters
in width, the entry (i, j, k) in PM ∈ RHenv×Wenv×K stands for
the probability that the robot gets the observation Mscan on
the exact pose (i× x

Henv
, j × y

Wenv
, k × 2π

K ). DSOM consists
of four main parts: (1) Observation Encoder (2) Environment
Encoder (3) Similarity Computation (4) Distribution Decoder.
Section A shows details in these four parts and the loss function.
We show the ground truth generation in Section B and in Section
C, we explain why DSOM can approximate the multimodal
probability distribution.

A. Architecture

Observation Encoder. As described in Equation (1),F scan
enc is

first deployed to encodeMscan to a feature map and then a Multi-
Layer Perceptron (MLP ) transforms this feature map to the
feature representation S ∈ RK×D. We can see that there are K
feature vectors inS, each of which is related to the feature at each
discretized rotation angle. As illustrated in Fig. 2,F scan

enc consists
of several encoding blocks, each of which contains convolutional
layers, batch normalization layers, non-linear activation layers
and pooling layers.

S = MLP (F scan
enc (Mscan)) (1)

Environment Encoder. As Equation (2) shows, F env
enc , which

is similar to F scan
enc , transforms the map of the environment

Menv ∈ RHenv×Wenv to its feature mapM ∈ R
Henv

8 ×Wenv
8 ×D.

M = F env
enc (Menv) (2)

Similarity Computation. Cosine similarity is deployed to com-
pute the similarity between S and M, resulting in the similarity
feature mapSIM ∈ R

Henv
8 ×Wenv

8 ×K . As described in Equation
(3), Sk ∈ RD is the kth feature vector in S, Mi,j ∈ RD is the
feature vector on pixel (i, j) on M and ε is a very small number
to avoid being divided by zero. SIMi,j,k indicates the (i, j, k)
entry in SIM.

SIMi,j,k =
Sk

T Mi,j

max (‖Sk‖2 · ‖Mi,j‖2, ε) (3)

Distribution Decoder. In Equation (4), Fdec and a softmax acti-
vation σ lift SIM to PM, which stands for the grid approxima-
tion of probability distribution over the state space.Fdec consists
of several decoding blocks, each of which contains convolutional
layers, batch normalization layers, non-linear activation layers
and an unpooling layer. The unpooling indexes are the same as
the pooling indexes in the environment encoder.

PM = σ (Fdec (SIM)) (4)

Loss Function. Kullback-Leibler divergence Loss [21] (KLD
Loss) is deployed to guide the training process. A unimodal prob-
ability distribution at the exact pose where the robot obtains the
observation is computed as the ground truth, GT. Equation (5)
illustrates how KLD Loss works, where GTi,j,k and PMi,j,k

respectively indicate the (i, j, k) entry in GT and PM.

Loss =

Henv∑
i=1

Wenv∑
j=1

K∑
k=1

[
GTi,j,k log

GTi,j,k

PMi,j,k

]
(5)

B. Ground Truth Generation

To generateGT ∈ RHenv×Wenv×K for a given pose (x, y, θ),
we begin with an all-zero matrix for GT. Then a GaussianBlur
is deployed on a one-hot ground truth matrix of (x, y), resulting
in GT′ ∈ RHenv×Wenv . After that, we find the nearest two
orientation values (θ1 and θ2) to θ in the discretized angle space.
Then a linear interpolation is deployed on these two values
as below, where Iθ1 indicates the discretized index for θ1 and
GT:,:,Iθ1

are all the entries of which third index is Iθ1

GT:,:,Iθ1
= | θ1 − θ

θ1 − θ2
|

GT:,:,Iθ2
= 1−GT:,:,Iθ1

(6)

We aggregate both the position and orientation ground truth as
described in Equation (7) and then a normalization is deployed
on GT leading to the final ground truth. GTi,j,k is the value on
the entry (i,j,k) of GT.

GTi,j,k = GTi,j,k ·GT′
i,j (7)

C. Multimodal Effect in DSOM

While there might exist a set of similar observations
{Ml

scan|l = 1, 2, . . .,m} obtained at a set of different states
{sl|l = 1, 2, . . .,m} in the training set, the ground truth PM is
only unimodal distribution. Why can the unimodal ground truth
guide the network to generate a multimodal probability distribu-
tion? We here prove the case in which {GTl|l = 1, 2, . . .,m}
are one-hot distribution, as described in Equation (8) where
GTl

i,j,k is the {i, j, k} entry in GTl, ilgt, j
l
gt, k

l
gt are respec-

tively the ground truth entry for position and orientation. We
further assume that all theMl

scan are the same for simplicity. The
conclusion is that the sum of the KLD Losses of thesem samples
is minimized only when the output PM is an even-distributed
multimodal distribution on these m poses.

Δ(i, j) =

{
1, if i = j
0, otherwise

GTl
i,j,k = Δ

(
i, ilgt

) ·Δ (
j, jlgt

) ·Δ (
k, klgt

) (8)
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Proof: As Ml
scan are the same, all the S generated by obser-

vation encoder are identical while environment encoder obtains
the same feature mapM. Thus all thePMl are the same, denoted
as PM. The sum of losses is described in Equation (9), where
PMsl indicates value on the entry sl of PM.

Loss =

m∑
l=1

⎧⎨
⎩

Henv∑
i=1

Wenv∑
j=1

K∑
k=1

[
GTl

i,j,k log
GTi,j,k

PMi,j,k

]⎫⎬
⎭

=

m∑
l=1

− logPMsl

(9)

Thus the problem turns to:

minimize
PM

m∑
l=1

− logPMsl

subject to
∑
s

PMs = 1

(10)

After applying Lagrange multiplier to it, the problem turns to
minimize the term below:

minimize
PM,λ

L =

m∑
l=1

− logPMsl + λ(1−
∑
s

PMs) (11)

Let the derivative of L with respect to every entry in PM and
λ be 0, we get:

1

λ
= PMs1 = PMs2 = . . . = PMsm

PMs = 0, ∀s /∈ {sl|l = 1, 2, . . .,m}
(12)

Also with
∑

s PMs = 1, we can get that only when Equation
(13) is satisfied, can the sum of these m KLD Losses get
minimized. Proof complete.

PMs1 = PMs2 = . . . = PMsm =
1

m
(13)

As training samples can cover part of the state space, it is
obvious that the KLD Loss can guide the network to approximate
the multimodal distribution.

IV. ADAPTIVE MIXTURE MCL

As the training samples cannot cover all the possible cases,
PM sometimes fails to approximate the accurate probability
distribution. The combination of traditional MCL and Dual MCL
with DSOM provides a solution. However, the combination
in [1], which deploys either MCL with probability p or Dual
MCL with probability 1− p in one iteration, is too simple. If
the proposal distribution fails to capture the correct poses at
some iteration and the algorithm happens to deploy Dual MCL,
the algorithm will lose track of the robot pose. To compensate
for this problem, we propose a novel filter, Adaptive Mixture
MCL (AdaM MCL).

In AdaM MCL, each particle has three elements
(si, wi

norm, wi), where the first one indicates the pose of
this particle, wi is the weight before normalization and wi

norm
is the normalized weight. In every updating iteration, we

first evaluate the degree we trust a particle by computing
T = wi

w∗
, where w∗ is the output of the weighting model when

given zero-difference in every direction as input. Please refer
to Section A in Appendix for the detailed equation for w∗.
According to T , we divide the whole set into H and L. As
there are obstacles around the robot, wi is never equal to w∗
even when the particle is at the same pose as that of the robot.
To compensate for this situation, we introduce a threshold
parameter Tcut ∈ (0, 1) and if T > Tcut, we directly add
this particle to H. If not, this particle is added to H with a
probability of T or L with a probability of 1− T . Finally, we
deploy traditional MCL update for H and Dual MCL update
with PM for L. Algorithm 1 in Section D in the Appendix
shows how AdaM MCL works.

V. EXPERIMENTS AND RESULTS

In this section, we conduct experiments in synthetic and real
scenes to investigate the ability of DSOM to approximate the
multimodal distribution and generalize across scenes. Also, we
compare AdaM MCL with previous methods on global local-
ization and kidnapping problems.

A. Experiments Setup

Datasets. We conduct experiments in both synthetic and real
environments.
� Synthetic Environments. We manually create 20 maps (43

meters in both length and width). We collect training data
in 18 of them and testing sequences in the other 2 maps. To
train DSOM, we add random obstacles in the environments
and simulate laser to get the observation. What we feed into
DSOM is the original map without obstacles and the ob-
servation. For the testing sequential data, we put unknown
obstacles or remove part of the environment along the path.

� Real Environments. We conduct experiments on two bench-
mark real-world datasets: the Royal Alcazar of Seville
dataset (UPO) (150 meters in length and 100 meters in
width) [22] and the Rawseeds indoor dataset collected
in the University di Milano-Bicocca (Bicocca) [23], [24].
For the Bicocca dataset, we divide the whole scene into
two smaller parts (40 meters in length and 30 meters in
width) for experiments. To train DSOM, we add random
obstacles to the map given by these datasets (SLAM-based
or floorplan) and collect training data using simulating
laser. With these synthetic data, we train DSOM, after
which it is applied to real observation in the same scene. A
map of the environment where the UPO dataset is collected
is shown in Fig. 4.

Baselines. There are four baselines in our experiments.
� MCL with random sampling [1].
� Mixture MCL [1] whose sampling model is trained by data

collected in the testing scene with random obstacles.
� Mixture MCL* whose sampling model is trained by data

containing the testing sequences except for the exact pose
at a given timestamp.

� PFRNN [19]1 the most recent and effective deep-learning-
based particle filter.

1We use the implementation from the github repository of the author: https:
//github.com/Yusufma03/pfrnns
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Fig. 3. Visualization results on the output of DSOM. As shown in (a)(c)(e), observation with obstacles around is indicated by blue lines. Red squares in (a)(c)(e)
indicate the ground truth position. The input of DSOM are observation in (a)(c)(e) and a map without obstacles. Green clusters in (b)(d)(f) show the predicted
probability peaks. Blue and purple lines in (b)(d)(f) show the observation on the predicted probability peaks. (a) Scene 1. (b) Prediction 1. (c) Scene 2. (d) Prediction
2. (e) Scene 3. (f) Prediction 3.

� PF-Net [20]: the particle-filter network.
For MCL and Mixture MCL, we follow the implementation

in [25], [26] and also try our best to tune the parameters in these
two baselines for better performance than the original parameter
set in [25], [26]. For Mixture MCL*, we note here that the
sampling model is “cheating” because an algorithm should not
have any prior about the testing sequences. PFRNN and PF-Net
are trained by data sequences collected in the same environment
where they are tested. The random sampling rate of traditional
MCL is set to 0.2. Particle number is set to 200 for all algorithms
in synthetic datasets and 500 for all real datasets.

DSOM and AdaM MCL. The network structure in DSOM,
as shown in Section B in Appendix, remains the same in
different experiments (different environment sizes) to demon-
strate its scalability. Tcut is set to 0.6 for all synthetic envi-
ronments and the UPO dataset. For the Bicocca dataset, Tcut

is set to 0.5 because the environment is more dynamic than
others.

About the GPU Memory Consumption and Time Con-
sumption: As the maps of the environments grow, the GPU
memory consumption becomes larger. To make a fair compar-
ison of the three deep-learning-based methods, we limit the
available GPU to only one TITAN GPU with 12 Gigabytes
memory. By scaling the resolution of the map, we can train
and evaluate the models with limited resources. And typically,
inference for one iteration in DSOM requires only 0.02 seconds
while PFRNN and PF-Net require only 0.08 seconds, all of
which are negligible. Thus, we will use the number of updating
iterations before convergence to compare the converging speed
of all the methods.

Evaluation Metric. For each testing sequence and method,
we run experiments for 100 times. Then the error of the es-
timated position (xest, yest, θest) is computed at each updat-
ing iteration: Epos =

√
(xest − xgt)2 + (yest − ygt)2 and Eθ =√

(θest − θgt)2. Thus at each updating iteration on each testing
sequence, we have 100 error values for each method. To show
the converging process of each method, we compute the mean
value as well as 95% confidence interval of the 100 error values
Epos at each updating step and plot the evolution of estimation
error of all methods on the same chart to compare their per-
formance. Because each update iteration in all the methods we
use can be finished in real-time, we care more about how long
the robot travels before the algorithm converges than the time
needed to converge. To evaluate how fast and stable an algorithm
converges, we first set a condition for converging to the accurate
pose: If Epos is lower than 2 meters and the error in orientation
Eθ is lower than 10 degrees for 5 consecutive updating steps,

Fig. 4. The map of UPO dataset [22] and multiple trajectories in this dataset.
We randomly select three testing clips among them.

we consider that the algorithm converges to the accurate pose.
If an algorithm converges, STEPS is computed as the number
of steps the algorithm requires to converge.

B. Model Validation

Case Study of the multimodal effect in DSOM. In Fig. 3, it
can be found that DSOM is able to take the observation and
map without obstacles as inputs and generate various num-
bers of probability peaks, including the ground truth, which
demonstrates DSOM as a good sampling model. A visualization
of the output of DSOM on Bicocca dataset can be found in
Appendix C.

Ablation Study. We compare four methods in a testing syn-
thetic environment: MCL, Mixture MCL*, Mixture MCL with
DSOM as the sampling model and AdaM MCL. The results for
global localization and kidnapping with these four methods are
shown in Fig. 5. It can be found that Mixture

MCL with DSOM achieves slightly better performance in the
global localization problem while Mixture MCL* outperforms
a bit in the kidnapping problem. The only difference between
them lies in the sampling model and as discussed previously,
the sampling model in Mixture MCL* is trained by testing data
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Fig. 5. Results on the ablation study experiment.

TABLE I
PARAMETER SENSITIVITY EXPERIMENT ON Tcut

TABLE II
PARAMETER SENSITIVITY EXPERIMENT ON PARTICLE NUMBER

while DSOM is trained by data collected in other environments.
This demonstrates that DSOM can generalize across synthetic
environments and provide an accurate probability distribution
over the state space for sampling (similar performance to a
“cheating” sampling model). Also, it is found that AdaM MCL
converges faster and achieves a more accurate estimation than
Mixture MCL with DSOM, demonstrating the effectiveness of
AdaM MCL.

Parameter Sensitivity Experiment. We conduct parameter
sensitivity experiments on two important parameters in AdaM
MCL: Tcut and the number of particles while other parameters
are fixed. Results are shown in Table I (the number of particles
is set to 200) and II (Tcut is set to 0.6). It can be found that the
estimation accuracy is relatively stable when the two parameters
vary, which demonstrates that AdaM MCL is not sensitive to
parameter settings.

C. Comparisons to Baselines in Global Localization and
Kidnapping

Train in some synthetic maps and test in “unseen” syn-
thetic maps. Six sequences of synthetic data are collected in two
synthetic maps to evaluate the performance of the three methods,
leading to 600 experiments for each method. For each sequence
of testing data, we first start from global localization and then
kidnap the robot for one time. Results for converging accuracy,
i.e. Epos, are “box-plotted” in Fig 6. For converging steps, we
divide the statistic into 4 intervals and compute the percentage
that each method converges within the respective interval. A
normalized histogram about converging steps is shown in Fig 7.

Fig. 6. Results of Epos in synthetic environments. (a) Global Localization.
(b) Kidnapping.

Fig. 7. Results for converging steps among 600 synthetic experiments. Red
indicates the percentage that an algorithm converges in 0 to 20 steps among 600
experiments and it is similar for other colors. MMCL stands for Mixture MCL.
(a) Global Localization. (b) Kidnapping.

It can be found that AdaM MCL achieves significantly better
estimation results than all the baselines. Also, AdaM MCL
achieves the highest converging rate and requires the least steps
to converge. Note that DSOM is only trained by data collected
in other environments while the sampling model in Mixture
MCL* is trained by testing data and PFRNN as well as PF-Net
is trained by data collected in the testing environments. These
demonstrate that DSOM is able to generalize across different
synthetic environments and AdaM MCL can accurately localize
the robot in “unseen” synthetic scenes. Train with simulation
observation on SLAM-based or floorplan maps and test on
real observation. As shown in Fig 8, it can be found that
in real scenes, AdaM MCL with DSOM, which is trained by
synthetic laser range data in the given blueprint or SLAM-based
map, outperforms all the baseline on estimation accuracy, even
Mixture MCL* whose sampling model is trained by testing data.
These results indicate that DSOM can learn from synthetic laser
data in the map of a real environment (SLAM-based or blueprint)
and generalize to real observation, which helps AdaM MCL
attain accurate estimation of the robot pose in real environments.
This is very promising because with a SLAM-based or blueprint
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Fig. 8. Results on real datasets. (a) Experiment on UPO dataset. (b) Experiment on part 1 of Bicocca dataset. (c) Experiment on part 2 of Bicocca dataset.

map, which is always available, we can quickly generate sim-
ulation observations to train DSOM and then deploy AdaM
MCL with DSOM to accurately localize the robot in the real
scenes.

VI. CONCLUSION

In this paper, we propose a samplable deep multimodal ob-
servation model, DSOM, as well as AdaM MCL, which is a
novel localization filter for global localization and kidnapping
problems. Our extensive experiments demonstrate that DSOM
is able to generalize across different synthetic environments.
Moreover, it can generalize to real environments when trained
on only simulated observations from SLAM-based or even
blueprint maps. Experiment results in both synthetic and real
environments show that AdaM MCL equipped with DSOM
achieves superior performance than previous methods on both
synthetic and real datasets in global localization and kidnapping
problems.

In the future, there are two interesting directions that might
stem from this work. The first is to transfer models trained in
synthetic environments to real environments, whose difficulties
stem from the considerable difference between synthetic and
real environments. This can be achieved by several possible
methods: retraining models on real datasets, which might accel-
erate the training process, or finding a suitable way to augment
synthetic data to make it possible to directly transfer models
trained on synthetic data to real data. The second direction is to
extend the work to localization in 3D space with 3D observation
information like point clouds or RGBD images. Recent deep
learning techniques for processing 3D information such as [27]
can be incorporated into DSOM to extract robust features from
both 3D maps and 3D observations. Then we can follow the
same pipeline to decode a probability distribution for sampling
poses.

APPENDIX A
TRANSITION AND OBSERVATION FUNCTION

Given a particle (sit−1, w
i
t−1), the motion at−1 and the ob-

servation ot, the transition model is described in Equation (14),
where σ is the variance of motion infomation.

sit = sit−1 + at−1 +N(0, σ) (14)

Observation function is described in Equation (15), where D
is the number of directions a 2D lidar perceives, (Li

o and (Li
p

are the range in the ith direction of the real observation and the
observation obtained at the pose of particle p on the map. σ is

the variance of the lidar range finder and Lmax is the maximum
range that the lidar can return. α and β are parameters set as 0.9
and 0.1 respectively.

Score(Lo, Lp) =
D∑
i=1

⎡
⎢⎣α× e−

(Li
o−Li

p)
2

2σ2

σ
√
2π

+ β × 1

Lmax

⎤
⎥⎦
3

(15)
w∗ is the output of the weighting model when given zero-

difference in every direction as inputs, that isw∗ = Score(L,L),
where L = Lo = Lp

APPENDIX B
DETAILED SETTINGS IN DSOM

TABLE B1
DETAILED SETTINGS IN DSOM

APPENDIX C
VISUALIZATION OF THE OUTPUT OF DSOM ON BICOCCA

DATASET

In Fig 9, DSOM, which is trained by simulation observation
on the blue print map, is able to take the real observation as input
and generate a distribution with various numbers of probability
peaks including the ground truth.
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Fig. 9. Visualization results on the output of DSOM on Bicocca dataset. (a)
Scene. (b) Prediction.

APPENDIX D
DETAILS ABOUT ADAM MCL
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